A. ALGORITHMS FOR SMALL DHTs

1) A DHT Algorithm for N=4

For a small DHT o length N=4 we have:

$$X(0) = [x(0) + x(2)] + [x(1) + x(3)]$$

$$X(1) = [x(0) - x(2)] + [x(1) - x(3)]$$

$$X(2) = [x(0) + x(2)] - [x(1) + x(3)]$$

$$X(3) = [x(0) - x(2)] - [x(1) - x(3)]$$

2) A DHT Algorithm for N=8

For DHT of length N=8 we have:

$$X(0) = [(x(0) + x(2)) + (x(4) + x(6))] +$$

$$+[(x(1) + x(3)) + (x(5) + x(7))]$$

$$X(2) = [(x(0) - x(2)) + (x(4) - x(6))] +$$

$$+[(x(1) - x(3)) + (x(5) - x(7))]$$

$$X(4) = [(x(0) + x(2)) + (x(4) + x(6))] -$$

$$-[(x(1) + x(3)) + (x(5) + x(7))]$$

$$X(6) = [(x(0) - x(2)) + (x(4) - x(6))] -$$

$$-[(x(1) + x(5)) - (x(3) + x(7))]$$

$$X(1) = [x(0) + x(2)] - [x(4) + x(6)] + c[x(1) - x(5)]$$

$$X(3) = [x(0) - x(2)] - [x(4) - x(6)] + c[x(3) - x(7)]$$

$$X(5) = [x(0) + x(2)] - [x(4) + x(6)] - c[x(1) - x(5)]$$

$$X(7) = [x(0) - x(2)] - [x(4) - x(6)] - c[x(3) - x(7)]$$

with: $c = \sqrt{2}$

We have $M_{DHT(8)} = 2$ $A_{DHT(8)} = 16$ as defined bellow.